The range of the function f(x)=x2+2x+2 is
1,∞
(2,∞)
(0,∞)
[1,∞)
Find the range of the given function
Given, f(x)=x2+2x+2
Let, f(x)=y
⇒y=x2+2x+1+1⇒y=(x+1)2+1⇒y-1=(x+1)2⇒x=y-1-1
So, the expression under the square root ≥0
⇒y-1≥0⇒y≥1
So, the range is [1,∞)
Hence, the required answer is D, [1,∞).
The range of the function f(x)=x2−xx2+2x is