wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The ratio in which the line 3x+y=9 divides the line sequent joining the points (1,3) and (2,7) is given by

A
4:3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
3:4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2:3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3:2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 3:4
Let the line 3x+y9=0 divide the line segment joining the point (1,3) and (2,7) in the ratio K:1 at point C.
So, by section formula C=(2K+1K+1,7K+3K+1)
C(2K+1K+1,7K+3K+1) lies on the line 3x+y9=0
3(2K+1K+1)+(7K+3K+1)9=0
6K+3+7K+39K9=0
4K3=0
K=34
Thus, the line 3x+y9=0 divide the line segment joining the point (1,3) and (2,7) in the ratio 3:4.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Concepts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon