The correct option is A sinα.eβ+e−β2
sin(α+iβ)=sinα.cos(iβ)+cosα.sin(iβ)
cos(iβ)=1−(iβ)22!+(iβ)44!−...
=1+β22!+β44!+...
eβ+e−β2=12[(1+β1!+β22!+...)+(1−β1!+β22!−...)]
=1+β22!+β44!+...=cos(iβ)
sin(iβ)=iβ−(iβ)33!+(iβ)55!−...
=i[β+β33!+β55!−...]=i[eβ+e−β]2
∴sin(α+iβ)=sinα.eβ+e−β2+cosα.i(eβ+e−β2)
∴ Real part of sin(α+iβ)=sinα.eβ+e−β2