The correct option is
B 2
αv3The relation between time and the distance is given byt=αx2+βx
Differentiate the above equation with respect to time,
1=2xαdxdt+βdxdt. . . . . . .(1)
Differentiate with respect to time,
0=2α(xdx2dt2+dxdtdxdt)+βdx2dt2. . . . .(2)
Velocity, v=dxdt. . . . . . .(3)
Acceleration, a=d2xdt2. . . . . . . .(4)
Substitute equation (3) and (4) in equation (1), we get
0=2α(xa+v2)+βa
βa=−2α(xa+v2)=−2αxa−2αv2
βa+2αxa=−2αv2
a=−2αv2β+2αx. . . . . . . . .(5)
Substitute equation (3) and (4) in equation (1), we get
1=2xαv+βv
2xαv=1−βv
2αx=1−βvv. . . . . . . . .(6)
Substitute equation (6) in equation (5), we get
a=−2αv2β+1−βvv=−2αv2βv+1−βv×v
a=−2αv3
The retardation is 2αv3.
The correct option is A.