The correct option is C 1+x2+x4+….+x10
Let P(x)=1+x2+x4+x6+….+x22 andQ(x)=1+x+x2+x3+….+x11P(x)=(1+x2)(1+x4)(1+x4+x8)(1−x4+x8)Q(x)=(1+x)(1+x2)(1+x4+x8)∴P(x)Q(x)=(1+x4)(1−x4+x8)1+x =1−x4+x8+x4−x8+x121+x =1+x121+x
Remainder when 1+x12 is divided by (1+x) is 2.
Therefore, the remainder of P(x) divided by Q(x) is
=2(1+x2)(1+x4+x8)
=2(1+x2+x4.....+x10)