We have,
Given that
A real valued function
f is continuous on [π2,π]
f is differentiable on (π2,π)
f(x)=sinx−cosx−1
f(π2)=sinπ2−cosπ2−1
=1−0−1
f(π2)=0
f(π)=sinπ−cosπ−1
=0−(−1)−1
=1−1
f(π)=0
Now,
f(a)=f(b)
f(π2)=f(π)
Now, f′(c)=0
So,f(x)=sinx−cosx−1
On differentiating this and we get,
f′(x)=cosx−(−sinx)−0
=cosx+sinx
f′(C)=cosC+sinC
Now,
f′(C)=0
0=cosC+sinC
cosC+sinC=0
cosC=−sinC
−tanC=1
tanC=−1
tanC=−tanπ4
tanC=tan(π−π4)
C=3π4
Hence, this is the answer.