The correct option is D 4√23a
Let y=asin3t,x=acos3t
On differentiating with respect to t, we get
dydx=3asin2tcost,dxdt=−3acos2tsint
∴dydx=3asin2tcost−3acos2tsint
⇒dydx=−sintcost=−tant
Again, differentiating with respect to x, we get
d2ydx2=−sec2t⋅dtdx
=−sec2t−3acos2tsint=13acos4tsint
⇒(d2ydx2)t=π4=13a(1√2)4⋅(1√2)
=(√2)53a=4√23a