The correct option is C cosA+cosC
We have, 2b=a+c
∴2sinB=sinA+sinC⇒4sinB2cosB2=2sinA+C2cosA−C2 =2cosB2cosA−C2∴2sinB2=cosA−C2⇒2cosA+C2=cosA−C2⋯(i)
Now, cosA+cosC=2cosA+C2⋅cosA−C2 =2cosA+C2⋅2cosA+C2
[using equation (i)]
=4cos2A+C2⋯(ii)
⇒4(1−cosA)(1−cosC)=4⋅2sin2A2⋅2sin2C2=4(2sinA2sinC2)2=4(cosA−C2−cosA+C2)2=4cos2A+C2⋯(iii)
[using equation (i)]
From (ii) and (iii), we get,
4(1−cosA)(1−cosC)=cosA+cosC