The correct option is D 6
Standard form of wave equation is
∂2u∂t2=C2∂2u∂x2
Given wave equation is
∂2u∂x2=25∂2u∂t2
⇒∂2u∂t2=125∂2u∂x2 so, C=15 and f(x)=3x and g(y)=3
So by De-alemberts solution of wave equation..
u(x,t)=12[f(x+ct)+f(x−ct)]+12c∫x+ctx−ctg(y)dy]
=12[3(x+15t)+3(x−15t)]+52∫x+ctx−ct3dy
=12[6x]+152[x+ct−x+ct]=3x+152(25t)
u(x,t)=3x+2t
So, u(1,1)=3+3=6