wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of

Open in App
Solution

A) The equation can be written as
x4exdx+4xy(xdyydx)=0
Dividing by x4, we have exdx+4yx.xdyydxx2=0
ex+2(yx)2=C
B) The equation can written as
ydx+xdy+xy(ydxxdy)=0
d(xy)+x2y2(dxxdyy)=0logxy1xy=C
C) Putting 3x2y=u in equation (3), we have
12[3dudx]=2u+3u+1dudx=2[322u+3u+1]=u+3u+1
u+3u+1du=dxu2log(u+3)=x+C
4x2y2log(3x2y+3)=C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon