The correct option is
A y2(logy)−exsin2x+c=0Rearranging above one, we get,
y(2logy+1)dy=ex(sin2x+sin2x)dx
Integrating both sides,
∫y(2logy+1)dy=∫ex(sin2x+sin2x)dx
∫2ylogydy+∫ydy=∫exsin2xdx+∫exsin2xdx
Solving L.H.S using integration by parts for first part,
logy∫2ydy−∫(dlogydy∫(2y)dy)dy+∫ydylogy×2y22−∫1y2y22dy+∫ydy
y2logy−∫ydy+∫ydy=y2logy
Solving R.H.S using integration by parts for first part,
sin2x∫exdx−∫(dsin2xdx∫exdx)dx+∫exsin2xdx
sin2x ex−∫2sinxcosxexdx+∫exsin2xdx
As 2sinxcosx=sin2x, replace it in above,
=sin2x ex−∫sin2xexdx+∫exsin2xdx=exsin2x
∴ solution to the differential equation will be,
y2logy=exsin2x+C