wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of cosxdydx+y=sinx is

A
y(secx+tanx)=secx+tanx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
y(secx+tanx)=secx+tanxx+c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
y(secx+tanx)=secxtanxx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y(secxtanx)=secx+tanxx+c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B y(secx+tanx)=secx+tanxx+c
cosxdydx+y=sinx
dydx+ysecx=tanx
It is a first degree linear differential equation
On comparing it with its standard form,we get
P=secx and Q=tanx
I.F=epdx=esecxdx=elog|secx+tanx|
=secx+tanx
Therefore, solution of given D.E is
y×I.F=Q×I.Fdx+c
y(secx+tanx)=tanx(secx+tanx)dx+c
y(secx+tanx)=(secxtanx+tan2x)dx+c
y(secx+tanx)=(secxtanx+sec2x1)dx+c
y(secx+tanx)=secxtanxdx+sec2xdxdx+c
y(secx+tanx)=secx+tanxx+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon