The correct option is B y=eyxc
dydx=y2xy−x2dydx=y2x2(yx−1)Continuedydx=(yx)2(yx−1)→(i)[Itisogenouseqn]Lety=vx,yx=vdydx=v+xdvdxandputineqn⇒v+xdvdx=v2(v−1)⇒xdvdx=v2v−1−v⇒xdvdx=v2−v2+vv−1⇒∫(v−1)vdx=∫dxx⇒∫vvdv−∫1vdv=logx+c⇒∫dv−logv=logx+c⇒v−logv=logx+c⇒yx−logyx=logxc⇒yx=logxc+logyx⇒yx=logcy∴cy=eyxy=eyxc