1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Variable Separable Method
The solution ...
Question
The solution of
d
y
d
x
=
sin
(
x
+
y
)
+
cos
(
x
+
y
)
is :
A
l
o
g
[
1
+
tan
(
x
+
y
2
)
]
+
c
=
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
l
o
g
[
1
+
tan
(
x
+
y
2
)
]
=
x
+
c
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
l
o
g
[
1
−
tan
(
x
+
y
2
)
]
=
x
+
c
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
l
o
g
[
1
−
tan
(
x
+
y
2
)
]
=
x
+
c
P
u
t
x
+
y
=
v
1
+
d
y
/
d
x
=
d
v
/
d
x
d
y
/
d
x
=
d
v
/
d
x
–
1
d
y
d
x
=
s
i
n
(
x
+
y
)
+
c
o
s
(
x
+
y
)
d
v
d
x
−
1
=
s
i
n
(
v
)
+
c
o
s
(
v
)
U
s
i
n
g
v
a
r
i
a
b
l
e
a
n
d
s
e
p
a
r
a
b
l
e
m
e
t
h
o
d
d
v
1
+
c
o
s
v
+
s
i
n
v
=
d
x
I
n
t
e
g
r
a
t
e
b
o
t
h
s
i
d
e
s
∫
d
v
1
+
c
o
s
v
+
s
i
n
v
=
∫
d
x
∫
d
v
1
+
1
−
t
a
n
2
v
2
1
+
t
a
n
2
v
2
+
2
t
a
n
v
2
1
+
t
a
n
2
v
2
=
∫
d
x
∫
s
e
c
2
v
2
d
v
2
(
1
+
t
a
n
v
2
)
=
∫
d
x
l
n
(
1
+
t
a
n
v
2
)
=
x
+
c
l
n
(
1
+
t
a
n
x
+
y
2
)
=
x
+
c
Hence, the option
C
is the correct answer.
Suggest Corrections
0
Similar questions
Q.
If
y
=
l
o
g
√
1
+
tan
x
1
−
tan
x
, prove that
d
y
d
x
=
sec
2
x
.
Q.
The solution of
d
y
d
x
=
x
l
o
g
x
is
[MP PET 2003]