The correct option is B x=tan−1y−1+Ce−tan−1y
The given equation can be written as,
dxdy+x1+y2=tan−1y1+y2(Linear form)
I.F.=e∫11+y2dy=etan−1y
Solution is given by,
x⋅etan−1y=∫etan−1y⋅tan−1y1+y2dyx⋅etan−1y=etan−1y⋅tan−1y−etan−1y+C∵∫tetdt=et(t−1),in R.H.S. take t=tan−1y⇒x=tan−1y−1+Ce−tan−1y