The solution of secθ−cosecθ=43, 0<θ<π2 and tanθ>1
secθ−cscθ=43 and 0<θ<π2; tanθ>1
3(sinθ−cosθ)=4sinθcosθ
Squaring on both sides,
9(1−2sinθcosθ)=16sin2θcos2θ
4sin22θ+9sin2θ−9=0
(4sin2θ−3)(sin2θ+3)=0
sin2θ=34;sin2θ≠−3
2tanθ1+tan2θ=34
Simplifying the quadratic equation gives us
tanθ=4±√73
But tanθ=4+√73 (∵tanθ>1)
⇒cosθ=√7+14 and sinθ=√7−14