The correct option is A −sin3x9+ex+x412+13x−1
Integrating the given differential equation, we have
dydx=−cos3x3+ex+x33+C1
but y1(0)=1 so 1=(−1/3)+1+C1⇒C1=1/3.
Again integrating, we get
y=−sin3x9+ex+x412+13x+C2
but y(0)=0 so 0=0+1+C2⇒C2=−1.Thus
y=−sin3x9+ex+x412+13x−1