The correct option is A y2+2(c+logy)e2x=0
dydx=y3e2x+y−y3+(e2x+y)y′(x)=0 ...(1)
Let R(x,y)=−y3 and S(x,y)=e2x+y
This is not an exact equation. because
dR(x,y)dy=−3y2≠e2=dS(x,y)dx
Find an integrating factor μ such that
μR(x,y)+μdydxS(x,y)=0 is exact
This means ddx(μR(x,y))=ddx(μ(S(x,y)))
∴−y3dμdy−3y2μ=e2μ⇒dμdyμ=−3y2+e2y3
⇒logμ=e22y2−3logy⇒μ=ee22y2y3
Multiplying both sides of (1) by μ
−ee22y2+⎛⎜
⎜
⎜⎝ee22y2(e2x+y)y3⎞⎟
⎟
⎟⎠dydx=0
Let P(x,y)=−ee22y2 and Q(x,y)=ee22y2(e2x+y)y3
This is an exact equation because
dP(x,y)dy=ee22y2+2y3=dQ(x,y)dx
Define f(x,y) such that
df(x,y)dx=p(x,y) and df(x,y)dy=Q(x,y)
Then the solution will be given by f(x,y)=c
Integrate df(x,y)dx w.r.t x
f(x,y)=∫−ee22y2dx=−ee22y2+g(y)
Differentiate f(x,y) w.r.t y to find g(y)
df(x,y)dy=ddy(−ee22y2x+g(y))=ee22y2xy3+dg(y)dy
Substitute into df(x,y)dy=Q(x,y)
ee22y2xy3+dg(y)dy=ee22y2(e2x+y)y3
Solve for dg(y)dy
dg(y)dy=ee22y2y2⇒∫dg(y)dy=∫ee22y2y2⇒y2+2(c+logy)e2x=0