The solution of the differential equation dydx=(4x+y+1)2 is
(4x+y+1)=tan(2x+C)
(4x+y+1)2=2tan(2x+C)
(4x+y+1)3=3tan(2x+C)
(4x+y+1)=2tan(2x+C)
Explanation for correct option
Given: dydx=(4x+y+1)2
Let v=4x+y+1
differentiating both sides
⇒dvdx=4+dydx⇒dvdx=4+4x+y+12⇒dvdx=4+v2⇒dvv2+4=dx
integrating both sides
⇒∫1v2+4dv=∫dx⇒12tan-1v2=x+c⇒tan-14x+y+12=2x+C⇒4x+y+12=tan(2x+C)⇒4x+y+1=2tan(2x+C)
Hence, option D is correct.