wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation x2dydxcos(1x)ysin(1x)=1;where y1 as x is

A
y=sin(1x)cos(1x)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y=x+1xsin(1x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
y=cos(1x)+sin(1x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
y=x+1xcos(1x)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C y=sin(1x)cos(1x)
x2dydxcos(1x)ysin(1x)=1
dydxyx2tan(1x)=1x2cos(1x)
dydx+(1x2tan(1x))y=1x2cos(1x)
I.F=e1x2tan(1x)dx
1x=t
dxx2=dt
=etan(t)dt
=eln(sect)
=sec(1x)
sec(1x).y=1x2cos(1x).sec(1x)
=sec2(1x)x2
Let 1x=t
dxx2=dt
=sec2(t)dt
sec(1x).y=tan(1x)+C
1.1=0+C C=1
sec(1x).y=tan(1x)1,
y=sin(1x)cos(1x)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon