The correct option is A 2cos(xy)+x−2=c
x4dydx+x3y+cosec(xy)=0x4dy+x3ydx+cosec(xy)dx=0x3(xdy+ydx)+cosec(xy)dx=0x3d(xy)+cosec(xy)dx=0d(xy)cosec(xy)+dxx3=0
Integrating both sides,∫d(xy)cosec(xy)+∫dxx3=0
∫sin(xy)d(xy)+∫x−3dx=0−cos(xy)+(x−2−2)=c;2cos(xy)+x−2=c.