1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Logarithmic Differentiation
The solution ...
Question
The solution of the differential equation
y
3
d
y
+
(
x
+
y
2
)
d
x
=
0
is:
A
1
2
l
o
g
(
x
4
+
2
x
2
y
+
2
y
2
)
+
K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
2
l
o
g
(
y
4
+
2
y
2
x
+
2
x
2
)
+
K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
l
o
g
(
y
4
+
2
x
2
+
2
x
y
2
)
−
2
t
a
n
−
1
(
y
2
+
x
x
)
+
K
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is
B
l
o
g
(
y
4
+
2
x
2
+
2
x
y
2
)
−
2
t
a
n
−
1
(
y
2
+
x
x
)
+
K
y
3
d
y
+
(
x
+
y
2
)
d
x
=
0
Let
y
2
=
z
2
y
.
d
y
=
d
z
d
z
2
√
z
=
d
y
Substituting we get
z
√
z
d
z
2
√
z
+
(
x
+
z
)
d
x
=
0
z
d
z
=
−
2
(
x
+
z
)
d
x
Let
z
=
v
x
d
z
=
x
d
v
+
v
d
x
Substituting we get
v
x
(
x
d
v
+
v
d
x
)
=
−
2
(
x
+
v
x
)
d
x
v
(
x
d
v
+
v
d
x
)
=
−
2
(
1
+
v
)
d
x
v
x
d
v
d
x
+
v
2
=
−
2
−
2
v
v
2
+
2
v
+
2
=
−
v
x
d
v
d
x
(
v
+
1
)
2
+
1
=
−
v
x
d
v
d
x
∫
d
x
x
=
−
∫
(
v
d
v
(
v
+
1
)
2
+
1
)
)
l
n
x
+
c
=
−
∫
(
(
v
+
1
−
1
)
d
v
(
v
+
1
)
2
+
1
)
)
l
n
x
+
c
=
−
∫
v
+
1
(
d
v
)
(
v
+
1
)
2
+
1
)
+
∫
d
v
(
v
+
1
)
2
+
1
)
l
n
x
+
c
=
−
l
n
(
(
v
+
1
)
2
+
1
)
2
+
t
a
n
−
1
(
v
+
1
)
2
l
n
x
+
C
=
2
t
a
n
−
1
(
v
+
1
)
−
l
n
(
(
v
+
1
)
2
+
1
)
2
2
l
n
x
+
C
=
2
t
a
n
−
1
(
x
+
y
2
x
)
−
l
n
(
(
x
+
y
2
)
2
+
x
2
)
+
2
l
n
x
C
=
2
t
a
n
−
1
(
x
+
y
2
x
)
−
l
n
(
y
4
+
2
x
2
+
2
x
y
2
)
Suggest Corrections
0
Similar questions
Q.
The solution of the differential equation
d
y
d
x
−
k
y
=
0
,
y
(
0
)
=
1
approach zero when
x
→
∞
, if
Q.
The solution of the differential equation
d
y
d
x
-
k
y
=
0
,
y
0
=
1
approaches to zero when x → ∞, if
(a) k = 0
(b) k > 0
(c) k < 0
(d) none of these
Q.
Solution of the differential equation
y
(
x
y
+
2
x
2
y
2
)
d
x
+
x
(
x
y
−
x
2
y
2
)
d
y
=
0
is given by
p
.
|
l
o
g
|
x
|
+
Q
.
l
o
g
|
y
|
−
1
x
y
=
C
Q.
The solution of differential equation
(
x
2
+
y
2
)
d
x
−
2
x
y
d
y
=
0
is
Q.
Solving the equation
√
(
2
x
2
+
5
x
−
2
)
−
√
2
x
2
+
5
x
−
9
=
1
we get two solutions of x ,let them be
k
,
m
.Find
−
(
k
∗
m
)
?
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Logarithmic Differentiation
MATHEMATICS
Watch in App
Explore more
Logarithmic Differentiation
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app