wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The solution of the differential equation y3dy+(x+y2)dx=0 is:

A
12log(x4+2x2y+2y2)+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
12log(y4+2y2x+2x2)+K
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
log(y4+2x2+2xy2)2tan1(y2+xx)+K
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B log(y4+2x2+2xy2)2tan1(y2+xx)+K
y3dy+(x+y2)dx=0
Let y2=z
2y.dy=dz
dz2z=dy
Substituting we get
zzdz2z+(x+z)dx=0
zdz=2(x+z)dx
Let z=vx
dz=xdv+vdx
Substituting we get
vx(xdv+vdx)=2(x+vx)dx
v(xdv+vdx)=2(1+v)dx
vxdvdx+v2=22v
v2+2v+2=vxdvdx
(v+1)2+1=vxdvdx
dxx=(vdv(v+1)2+1))
lnx+c=((v+11)dv(v+1)2+1))
lnx+c=v+1(dv)(v+1)2+1)+dv(v+1)2+1)
lnx+c=ln((v+1)2+1)2+tan1(v+1)
2lnx+C=2tan1(v+1)ln((v+1)2+1)2
2lnx+C=2tan1(x+y2x)ln((x+y2)2+x2)+2lnx
C=2tan1(x+y2x)ln(y4+2x2+2xy2)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon