The solution of the equation 4cos2x+6sin2x=5
Consider given the trigonometry equation,
4cos2x+6sin2x=5
4(1−sin2x)+6sin2x=5
2sin2x+4=5
2sin2x=1
sin2x=12
sinx=1√2orsinx=−1√2
sinx=sinπ4orsinx=sin(−π4)
x=π4orx=−π4
x=nπ+(−1)nπ4orx=nπ−(−1)nπ4
Solve the equation: √(116+cos4x−12cos2x)+√(916+cos4x−32cos2x)=12