CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon


Question

The solution set of $$\log_{2}\left | 4-5x \right |> 2$$ is equal to


A
(85,+)
loader
B
(45,85)
loader
C
(,0)(85,+)
loader
D
none of these
loader

Solution

The correct option is C $$\left (- \infty ,0 \right )\cup \left (\displaystyle \frac{8}{5},+\infty \right )$$
$$\log _{ 2 }{ \left| 4-5x \right|  } >2\\ \Rightarrow \left| 4-5x \right| >4$$
Case 1:
$$ 4-5x>4\\ \Rightarrow x<0\\ \therefore \quad x\in \left( -\infty ,0 \right) $$
Case 2:
$$-4+5x>4\\ \Rightarrow x>\dfrac { 8 }{ 5 } \\ \therefore \quad x\in \left( \dfrac { 8 }{ 5 } ,\infty  \right) $$
From Case 1 & Case 2;
$$x\in \left( -\infty ,0 \right) \cup \left( \dfrac { 8 }{ 5 } ,\infty  \right) $$

Ans: C

Maths

Suggest Corrections
thumbs-up
 
0


similar_icon
Similar questions
View More


similar_icon
People also searched for
View More



footer-image