The correct option is D 2x+2y+1=0
Given:
2x−3y+6=0⇒2x−3y=−6
6x+y+8=0⇒6x+y=−8
The corresponding matrix equation is
[2−361][xy]=[−6−8]
i.e., AX=B
Where, A=[2−361],X=[xy],B=[−6−8]
AX=B
⇒X=A−1B
Now, A=[2−361]⇒|A|=2+18=20
Adjoint of A=adj A=[13−62]
A−1=1|A|(adjA)=120[13−62]X=120[13−62][−6−8]
=120[−3020]=⎡⎣−321⎤⎦
So we have, (x,y)=(−32,1) which also satisfies 2x+y+2=0,4x−3y+9=0 and 2x+2y+1=0