The solutions of the equation1+sin2xsin2xsin2xcos2x1+cos2xcos2x4sin2x4sin2x1+4sin2x=0,0<x<π are:
π6,5π6
7π12,11π12
5π12,7π12
π12,π6
Explanation for the correct option
R1→R1+R2221cos2x1+cos2xcos2x4sin2x4sin2x1+4sin2x=0C1→C1-C2021-11+cos2xcos2x04sin2x1+4sin2x=0∴2+8sin2x-4sin2x=0⇒sin2x=-12⇒x=7π12,11π12
Hence the correct option is option(b) i.e. 7π12,11π12
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is:
Solution of the equation xx+1+1=0
If k>1 and the determinant of the matrix A2 is k2, then |α|=
A=kkαα0αkα00k