The correct option is
A 1.215×10−5 mol litre
−1PtH2(g)|HCl(aq)|AgCls|Ag(s)(i) 12H2→H++eAnode
AgCl+e→Ag+Cl−Cathode
------------------------------------------------------
12H2+AgCl→H++Ag+Cl−
(ii) −ΔGo=nEoG=1×0.23×96500=22195J(at 15oC) ---------- (1)
−ΔGo=nEoF=1×0.21×96500=20265J(at 35oC) ----------- (2)
Also,
ΔGo=ΔHo−TΔSo
Solving (1) and (2) equation we have
−22195=ΔHo−288×ΔSo
−20265=ΔHo−308×ΔSo
- - -
------------------------------------------------------------
⇒ΔSo=−96.50J
Again, using (1) equation
−22195=ΔHo−288×(−96.5)
⇒ΔH=−49987J
∴ΔHo=−49.987kJ
At 298K or 250C
ΔGo=ΔHo−TΔSo=(−49987)−298×(−96.5)
ΔGo=−21230J=−nE0F=−1×E0×96500
⇒E0=0.22V
Consider the following reaction at AgCl(s)/Ag electrode
Ag→Ag++e;EoOP=−0.8V
AgCl(s)+e→Ag+Cl−;EoRPCl−/AgCl/Ag=0.22V
--------------------------------------
Net : AgCl→Ag++Cl−
∴Ecell=EoOPAg/Ag+−0.0591log[Ag+]+EoRPCl−/AgCl/Ag+0.0591log1[Cl−]
Ecell=0 at equilibrium
⇒EoOPAg/Ag++EoRPCl−/AgCl/Ag=0.0591log[Ag+][Cl−]=0.0591logKsp
⇒−0.8+0.22=0.0591logKsp
⇒logKsp=−0.580.059=−9.83
⇒KspAgCl=1.477×10−10
∴ Solubility of AgCl=√(Ksp)=√(1.477×10−10)=1.215×10−5 mol litre−1