wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The straight line x-2y+1=0 intersects the circle x2+y2=25 at points A and B, then the coordinates of points of intersection of tangents drawn at A and B are

A
(-25,50)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
(25,-50)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
(-5,25)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
(5,-25)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A (-25,50)
Let C (h,k) be the intersection point of the tangents drawn at A and B. Then AB will be the chord of contact of the tangents drawn from C to the circle x2+y2=25.
So the equation of the chord of contact is hx + ky - 25 = 0
comparing the above equation with the given equation of AB: x - 2y + 1 = 0, we get
h1=k2=251h=25, k=50

flag
Suggest Corrections
thumbs-up
14
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord of a Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon