The sum and sum of squares corresponding to length x (in cm) and weight y (in gm) of 50 plant products are given below :
∑50i=1xi=212,∑50i=1x2i=902.8,∑50i=1yi=261,∑50i=1y2i=1457.6
Which is more varying, the length or the weight ?
Here ∑50i=1xi=212,∑50i=1x2i=902.8,∑50i=1yi=261,∑50i=1y2i=1457.6
Now, ¯x=21250=4.24
σ2x=150×902.8−(21250)2
= 18.056 - 17.978 = 0.078
σx=√0.078=0.28
Also ¯y=26150=5.22
σ2y=150×1457.6−(26150)2
= 29.152−27.248=1.904
σy=√1.904=1.38
C.V. of length = 0.284.24×100=6.6
C.V. of weight = 1.385.22×100=26.45
C.V. of weight > C.V of length