The sum of 100 terms of the series 0.9+0.09+0.009+.......... will be equal to
1-110100
1+110106
1-110106
1+110100
Explanation for the correct option:
Given, 0.9+0.09+0.009+...
⇒90.1+0.01+0.001+...⇒9110+1100+11000+...
110,1100,11000,....... is a geometric progression with the first term a=110 and r=110.
Sum of geometric progression=a1-rn1-r for, r<1
Thus, sum of 110+1100+11000+....... =1101-1101001-110
=110×1-110100910=110×1091-110100=191-110100
⇒9110+1100+11000+........=9×191-110100⇒9110+1100+11000+........=1-110100
Thus, 0.9+0.09+0.009+.......... is equal to 1-110100.
Hence, option (A) is correct.
A series in G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying odd places, then the common ratio will be equal to