The correct option is A n(n2−1)(3n+2)24
Consider
(b1+b2+b3+...+bn)2=b21+b22+...+b2n+2∑i=jbibj
taking b1=1,b2=2,...,bn=n
∴(1+2+3+...+n)2=12+22+32+...+n2+2∑(Product of number taken two at a time)
⇒2∑bibj=(1+2+3+...+n)2−n∑n=1n2=n2(n+1)24−n(n+1)(2n+1)6=n(n2−1)(3n+2)12
⇒∑bibj=n(n2−1)(3n+2)24