The sum of first ten terms of an A.P. is four times the sum of its first five terms, then ratio of the first term and common difference is
Let the A.P. be:
a+(a+d)+(a+2d)+....
Sn=n2×(2a+(n−1)d)
Hence, S10=102×(2a+(10−1)d)
=5(2a+9d)
Similarly we have,
S5=52×(2a+(5−1)d)
=52×(2a+4d)
Given: S10=4S5
⇒5(2a+9d)=4×52×(2a+4d)
⇒5(2a+9d)=2(2a+4d)
⇒ 2a+9d=4a+8d
⇒ ad=12