The sum of n terms of the series 11+3+13+5+15+7..... is
2n+1
2n+1-1
122n+1
122n+1-1
Explanation for the correct option:.
Find the required sum.
Given series: 11+3+13+5+15+7.....
So, the sum of n terms of the given series is,
11+3+13+5+15+7.....+12n-1+2n+1=3-13+13-1+5-35+35-3+....+2n+1-2n-12n+1+2n-12n+1-2n-1=3-132-12+5-352-32+....+2n+1-2n-12n+12-2n-12=123-1+5-3+....+2n+1-2n-1=123-1+5-3+....+2n+1-2n-1=122n+1-1=122n+1-1
Hence, option (D) is the correct answer.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
Determine whether the following numbers are in proportion or not:
13,14,16,17
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.
The product of the following series (1+11!+12!+13!+...) × (1−11!+12!−13!+...) is