The correct option is B 3n(n+1)2−2n
Let
S=2⋅5+5⋅8+8⋅11+……
So, the general term is,
Tr=(3r−1)(3r+2)⇒Tr=9r2+3r−2
Sn=n∑r=1Tr =9n∑r=1r2+3n∑r=1r−n∑r=12
=9(n(n+1)(2n+1)6)+3(n(n+1)2)−2n =3n(n+1)2[2n+1+1]−2n
=3n(n+1)2−2n
Alternate method:
Putting n=1,
Then sum of 1 term =10
3n(n−1)2+n=13n(n+1)2−2n=103n(n−1)2+2n=23n(n−1)2−2n=−2
Hence, the sum of n terms is
3n(n+1)2−2n