The correct option is D 1(1−x)3
Let S=1+3x+6x2+10x3+...∞→(1)
Multiplying (1) by x we get
xS=x+3x2+6x3+...→(2)
(1)−(2), gives
(1−x)S=1+2x+3x2+4x2+...→(3)
Multiplying (3) by x, we get
x(1−x)S=x+2x2+3x3+4x4+...→(4)
(3)−(4), gives
(1−x)2S=1+x+x2+x3+...
⇒(1−x)2S=11−x⇒S=1(1−x)3