The correct option is A π4
We have,
tan−113+tan−129+tan−1433+⋯ upto ∞
∴Tn=tan−12n−11+22n−1
⇒Tn=tan−12n−1(2−1)1+2n⋅2n−1
Using the formula:
{tan−1x−y1+xy=tan−1x−tan−1y}
=tan−12n−tan−12n−1
Now put n=1,2,3,...,n and add, we get
Sn=tan−12n−tan−11
∴S∞=π2−π4=π4