The sum of the squares of two consecutive multiples of 7 is 1225. Find the multiples.
Let the required consecutive multiples of 7 are 7x and 7(x + 1).
According to the given condition,
(7x)2+[7(x+1)]2=1225
49x2+49(x2+2x+1)=1225
49x2+49x2+98x+49=1225
98x2+98x−1176=0
x2+x−12=0
x2−4x−3x−12=0
x(x+4)−3(x+4)=0
(x+4)(x−3)=0
x+4=0orx−3=0
x=−4 or x=3
Therefore, x=3(Neglecting the negative value)
When x=3,
7x=7×3=21
7(x+1)=7(3+1)=7×4=28
Hence, the required multiples are 21 and 28.