The correct options are
A a+b+c=0
B a3+b3+c3=3abc
The lines are concurrent,
=>⎡⎢⎣abcbcacab⎤⎥⎦=0
Applying,C1=C1+C2+C3,
=⎡⎢⎣a+b+cbca+b+ccaa+b+cab⎤⎥⎦
Applying, R1=R1−R2 and R2=R2−R3,
=(a+b+c)⎡⎢⎣0b−cc−a0c−aa−b1ab⎤⎥⎦
Expanding by C1,
=(a+b+c)(−a2−b2−c2+ab+bc+ac)=0
=>(a+b+c)=0
or,
(a+b+c)(−a2−b2−c2+ab+bc+ac)=0
abc−a3−b3+abc+abc−c3=0
a3+b3+c3=3abc
So options are A and B.