The correct option is A a24b
The equation of trajectory is, y=ax−bx2
For maximum height of projectile, y should be maximum.
⇒dydx=0 and d2ydx2<0
⇒dydx=a−2bx=0
⇒x=a2b
d2ydx2=−2b<0
∴ For x=a2b, y is maximum
Substituting the value of x=a2b in trajectory equation,
⇒ymax=a(a2b)−b(a2b)2
∴ymax=a24b
Alternate solution:
Given equation of trajectory as y=ax−bx2⇒ y=xa⎡⎢
⎢
⎢
⎢⎣1−x(ab)⎤⎥
⎥
⎥
⎥⎦
Comparing the above equation with equation of trajectory we have
y=xtanθ(1−xR)
⇒ tanθ=a,R=ab
Now we have, R=u2sin2θg=2u2sinθcosθg
⇒ R=(2u2sinθcosθg×tanθ4)×4tanθ
⇒ R=(u2sin2θ2g)×4tanθ
⇒ R=Hmax×4tanθ⇒ Hmax=Rtanθ4
Putting the values of R and tanθ into the above relation we get
Hmax=a24b