The value of 1.C1+3.C3+5.C5+7.C7+.... whereC0,C1,C2.....Cn are binomial coefficients in the expansion of (1+x)n is:
n∙2n-2
C0+C1x+C2x2+...+Cnxn=(1+x)n .
Differentiating w.r.t. x,
C1+2C2x+3C3x2+...+nCnxn−1=n(1+x)n−1
Putting x = 1 and x = -1 and then adding.
2[C1+3C3+5C5+....]=n2n−1