The correct option is C 4020
Given,
I=220101∫0x1004(1−x)1004dx1∫0x1004(1−x2010)1004dx,
Let,
I1=1∫0x1004(1−x)1004dx=21/2∫0x1004(1−x)1004dxand I2=1∫0x1004(1−x2010)1004dx
Putting x1005=t
⇒1005x1004dx=dt
⇒110051∫0(1−t2)1004dt
=110051∫0(t(2−t))1004dt⎧⎪⎨⎪⎩∵a∫0f(x)dx=a∫0f(a−x)dx⎫⎪⎬⎪⎭
=110051∫0(t1004(2−t))1004dt
Now put t=2y
⇒dt=2dy
⇒I2=210051/2∫0(2y)1004(2−2y)1004dy=21005⋅21004⋅210041/2∫0y1004(1−y)1004dy=11005220091/2∫0y1004(1−y)1004dy=1100522008I1⇒I1I2=100522008⇒I=22010I1I2=4⋅1005=4020