The value of 4+15+14+15+14+.........∞ is
2+4530
4+4530
2+2530
5+2530
Explanation for the correct answer:
Let y=4+15+14+15+14+.........∞
⇒ y=4+15+1y
⇒ y=4+y5y+1
⇒ y=20y+4+y5y+1
⇒ 5y2+y=21y+4
⇒ 5y2-20y-4=0
⇒ y=20±202-4×-4×52×5 ∵y=-b±b2-4ac2a
⇒ y=20±400+8010
⇒ y=20±43010
⇒ y=2±2530
Hence, the value of the given expression is 2+2530.
Hence, option C is the correct answer.
loge(n+1)−loge(n−1)=4a[(1n)+(13n3)+(15n5)+...∞] Find 8a.
If f=x1+x2+13(x1+x2)3+15(x1+x2)5+... to ∞ and g=x−23x3+15x5+17x7−29x9+..., then f=d×g. Find 4d.