The correct option is
A −2Solving the equation: x2+ax+sin−1(x2−4x+5)+cos−1(x2−4x+5)=0
x2+ax=−{sin−1(x2−4x+5)+cos−1(x2−4x+5)}
x(x+a)=−{sin−1(x2−4x+5)+cos−1(x2−4x+5)}
Since L.H.S i.e., x(x+a)≥0,
and R.H.S i.e., −{sin−1(x2−4x+5)+cos−1(x2−4x+5)}<0
⟹x(x+a)=0
⟹x=0,−a
Also,−{sin−1(x2−4x+5)+cos−1(x2−4x+5)}=0
putting x=−a, then (x2−4x+5) becomes (a2+4a+5)
⟹{sin−1(a2+4a+5)+cos−1(a2+4a+5)}=0
⟹sin−1(a2+4a+5)=−cos−1(a2+4a+5)
⟹tan−1(a2+4a+5)=−1
⟹(a2+4a+5)=tan(−1)
⟹a2+4a+5=−Π4
Subtracting 5 from both the sides, we get;
⟹a2+4a+5−5=−Π4−5
⟹a2+4a=−Π4−5
⟹a2+4a+(Π4+5)=0
Now solving the quadratic equation ,
⟹a=−4±√−4−Π2
⟹a=−4±i√4+Π2
⟹a=−2±i√4+Π2
So, the given equation has atleast one solution for a=−2