wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of cos2π15cos4π15cos8π15cos16π15 is ___________.

Open in App
Solution

cos2π15 cos4π15 cos8π15cos16π15=cos 2π15 cos 22π15 cos 23π15 cosπ+π15 since, cos( π+θ ) = -cos θ= cos 2π15 cos 22π15 cos 23π15 -cosπ15= - cosπ15 cos 2π15 cos 22π15 cos 23π15multiply and divide by 2 sin π15= - 2 sinπ15 cosπ15 cos2π15 cos22 π15 cos23π152 sin π15
= -12 sin π15sin2π15 cos2π15 cos22π15 cos23π15 using identity, 2 sinθ cosθ= sin2θ=-122sin π15sin4π15 cos4π15 cos23π15= -123sin π15sin 8π15 cos 8π15=-124sinπ15sin 16π15= -116 sin π+π15sin π15= -116 -sin π15sin π15 since, sinπ+0=-sinθ= -116 -1= 116Hence, value of cos2π15 cos4π15 cos8π15 cos16π15 is 116

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Right Angled Triangle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon