The value of
cot(π4+θ)cot(π4−θ) is
Simplify the given expression using trigonometric formula
Given Expression:
cot(π4+θ)cot(π4−θ)
cot(A+B)=cotAcotB−1cotB+cotA &
cot(A−B)=cotAcotB+1cotB−cotA
∴cot(π4+θ)cot(π4−θ)
=cot(π4)cotθ−1cotθ+cot(π4)×cot(π4)cotθ+1cotθ−cot(π4)
=cotθ−1cotθ+1×cotθ+1cotθ−1
=1
Hence, option (C) is correct.