wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of definite integral 2201010t1004(1t)1004dt10t1004(1t2010)1004dt is

Open in App
Solution

wt, the given integral

I=10t1004(1t)1004dt

I=10t1004(1t2010)1004dt

For, J

Let t1005=z

1005×t10051=dzdt

t1004dt=dz1005

Now,

I=1011005×(1z2)1004dz

I=1011005×((1z)(1+z))1004dz

Using
baf(x)dx=ba(a+bx)dx

J=1011005×z1004×(2z)1004dz

Substituting,

z=2y

dz=2dy

J=110051/20(2y)1004×(22y)1004×2dy

=110051/2021004×y1004×21004×(1y)1004×2×dy

=11005×22009×1/20y1004×(1y)1004×(1y)1004×dy

now,
I=10t1004×(1t)1004dt

using, propr

2a0f(x)dx=2a0f(x)dx

I=21/20x1004(1x)1004dx

Replacing x with y

I=21/20y1004(1y)1004dy

required integral

=22010×Ij

=22010×2×1/20y1004(1y)1004dy220091005×1/20y1004×(1y)1004dy

=22010×2×100522009=220102009×2×1005

=2×2×1005

=4×1005=4020

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon