The value of cotΘ+cosecΘ−1cotΘ−cosecΘ+1 is
cotθ=cosθsinθ and cosecθ=1sinθ cotθ+cosecθ−1cotθ−cosecθ+1=cosθsinθ+1sinθ−1cosθsinθ−1sinθ+1 ⇒cosθ+1−sinθcosθ−1+sinθ=
Prove the following trigonometric identities.(i) 1+cosθ+sinθ1+cosθ−sinθ=1+sinθcosθ
(ii) sinθ−cosθ+1sinθ+cosθ−1=1secθ−tanθ
(iii) cosθ−sinθ+1cosθ+sinθ−1=cosecθ+cotθ
(iv) (sinθ+cosθ)(tanθ+cotθ)=secθ+cosecθ