The correct option is D 2
x=f(t)=aln(bt)=atlnb ---------- (1)
y=g(t)=b−ln(at)=(blna)−t=(alnb)−t=a−tlnb
∴y=g(t)=aln(b−t)=f(−t) ----------- (2)
From equations (1) and (2),
xy=1
f(t)=g(t)⟹f(t)=f(−t)⟹t=0[∵f(t) is one-one function]
At t=0,x=y=1
∵xy=1, dydx=−1x2 and d2ydx2=2x3
At x=1, d2ydx2=2