The correct option is B 2
x=f(t)=aln(bt)=atlnb --------(1)
y=g(t)=b−ln(at)=(blna)−t=(alnb)−t=a−tlnb
∴y=g(t)=aln(b−t)=f(−t) --------(2)
From equations (1) and (2),
xy=1
∵xy=1
fg=1
∴fg′+gf′=0
∴fg′′+g′f′+g′f′+gf′′=0
or fg′′+gf′′+2g′f′=0
or ff′g′′g′+gf′′g′f′=−2 -------(3)
From equation (2), g(t)=f(−t)
∴g′(t)=−f′(−t)
and g′′(t)=f′′(−t)
Substituting in equation (3), we get
f(t)f′(t).f′′(−t)−f′(−t)−f(−t)f′(−t).f′′(t)f′(t)=−2
f(t)f′(t).f′′(−t)f′(−t)−f(−t)−f′(−t).f′′(t)f′(t)=2