Relation between Inverses of Trigonometric Functions and Their Reciprocal Functions
The value of ...
Question
The value of ∫2π0|cosx−sinx|dx, is
A
4√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2√2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4√2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D4√2 I=∫2π0|cosx−sinx|dx=∫π40|cosx−sinx|dx+∫5π4π4|cosx−sinx|dx+∫2π5π4|cosx−sinx|dx For 0<x<π4 and 5π4<x<2π cosx>sinx ...(1) And for π4<x<5π4 cosx<sinx ...(2) Using (1) and (2), we get I=∫π40(cosx−sinx)dx−∫5π4π4(cosx−sinx)dx+∫2π5π4(cosx−sinx)dx=[sinx+cosx]π40−[sinx+cosx]5π4π4+[sinx+cosx]2π5π4=(1√2+1√2−0−1)−(−1√2−1√2−1√2−1√2)+(0+1+1√2+1√2)=√2−1+2√2+1−√2=4√2