wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

The value of 2π0|cosxsinx|dx, is

A
42
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
42
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 42
I=2π0|cosxsinx|dx=π40|cosxsinx|dx+5π4π4|cosxsinx|dx+2π5π4|cosxsinx|dx
For 0<x<π4 and 5π4<x<2π
cosx>sinx ...(1)
And for π4<x<5π4
cosx<sinx ...(2)
Using (1) and (2), we get
I=π40(cosxsinx)dx5π4π4(cosxsinx)dx+2π5π4(cosxsinx)dx=[sinx+cosx]π40[sinx+cosx]5π4π4+[sinx+cosx]2π5π4=(12+1201)(12121212)+(0+1+12+12)=21+22+12=42

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon